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Significant efforts have been expended to characterize and
understand the electronic nature of silylenes. The diaminosub-
stituted silylenes1,1 2,2 and 33 enjoy a special interest, both
theoretically1,4,5 and experimentally,2,6 because of their unusual
high thermodynamic and kinetic stability. Silylene1 can be
regarded as a 6π-electron aromatic molecule, and the nature and
degree of electron delocalization in this silyene has been
controversial.4-6 We report here the chemical shift tensors for

1-3 (1 δ11 ) 284.9,δ22 ) -16.1,δ33 ) -43.3;2 δ11 ) 350.7,
δ22 ) -2.1,δ33 ) -4.5;3 δ11 ) 316.4,δ22 ) 21.1,δ33 ) -60.0
ppm), along with theoretical calculations for model molecules,
including nucleus-independent chemical shift (NICS) calcula-
tions.7 The latter support the model that1 and3 are cyclically
delocalized and have some “aromatic” character.
The slow-spinning29Si CPMAS NMR spectra of1-3 were

determined at 59.6 MHz, and the results were analyzed using the
Herzfeld-Berger method8 to determine the chemical shielding
tensors. The isotropic shiftsδ 29Si of the silylenes in the solid

(see Table 1) are very similar to those observed in solution for
these compounds (78, 117, and 92 ppm for1, 2, and 3,
respectively). In all three silylenes, the silicon atoms have
chemical shielding tensors of nearly axial symmetry. One tensor
component (δ11) is significantly deshielded, whileδ22 andδ33 have
nearly the same magnitude and are in the expected shift range
for sp3-type silicons,+30 to-60 ppm (see Table 1). Therefore,
the measured values for the spread of the tensor,∆δ ()δ11 -
δ33) for the silylene silicons are very large. The results for the
silylenes parallel those for stable disilenes9 and analogous
diaminocarbenes,10 reflecting a highly anisotropic electron dis-
tribution around the central silicon.
The chemical shielding tensors of silylenes1 and 2 and of

model compounds4-6 were calculated using the DFT-hybrid
GIAO method11 and are summarized in Table 1.12 Since this
theoretical approach is known to overestimate the deshielding
contributions to the chemical shielding tensor in cases when
electron correlation is important,12cwe also performed MP2/GIAO
calculations13 for the smaller molecules4 and5. The chemical
shielding tensors of4 and5were also calculated using the IGLO
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Table 1. Calculated and Observed Chemical Shift Tensors for
Silylenes

B3LYP/GIAOa

δiso δxx δyy δzz ∆δ CSAc Θ (deg)

1d 93.7 334.1 -14.8 -38.3 372.4 360.7
2d 140.4 432.8 10.0 -20.8 452.6 417.4 4.7
4e 84.8 326.9 -42.2 -30.2 369.1 363.1
5e 131.9 430.3 -16.6 -18.1 448.4 447.7 13.5
6e 90.8 327.4 -15.1 -39.4 366.8 354.6

MP2/GIAOb

δiso δxx δyy δzz ∆δ CSA Θ (deg)

4 64.0 277.9 -46.2 -39.6 324.1 320.8
5 115.1 390.1 -18.7 -26.0 416.1 412.5 0.5

experimental values

δiso δ11 δ22 δ33 ∆δ CSA

1 75.2 284.9 -16.1 -43.3 328.2 314.6
2 114.7 350.7 -2.1 -4.5 355.2 354.0
3 92.5 316.4 21.1 -60.0 376.4 335.8

a The 6-311+G(2df,p) basis set was used; for1, 2, and 6 a
6-311+G(2df,p)(Si), 6-31G*(C,N,H) basis set was used.b A tz2p(Si),
tzp(C,N), dz(H) basis set was used.cChemical shift anisotropy.
dRelative to TMS.σ(29Si(TMS): B3LYP/GIAO/(6-311+G(2df,p)(Si).
6-31G*(C,N,H))//HF/6-31G*: 332.5.eRelative to TMS.σ(29Si(TMS):
B3LYP/GIAO/6-311+G(2df,p//MP2/6-31G*: 327.9.σ(29Si(TMS):
MP2/GIAO/(tz2p(Si)tzp(C,N),dz(H))//MP2/6-31G* 371.1
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method,14which allows the chemical shielding tensor to be broken
down into distinct orbital contributions.
The orientation of the principal components of the chemical

shielding tensor relative to the molecular frame in1-3 as
predicted by our MO calculations is shown in Figure 1. In1
and3, the strongly deshieldedδxx is normal to both the silicon
lone pair and its empty 3p-orbital (δxx ) δ11). The intermediate
principal valueδ22 is perpendicular to the molecular plane (δ22

) δyy). The most shielded componentδ33 is aligned along the
symmetry axis of1 and3 (δ33 ) δzz). The spatial orientation of
the chemical shielding tensor in the saturated diaminosilylenes2
and5 is very similar to that in1 except that due to the lower
symmetry the principal axes of the shielding tensor are slightly
rotated by the angleΘ around the molecularz-axis (see Figure
1).15

The orbital contributions as predicted by IGLO calculations
for 4 and5 are given in Table 2, in terms of absolute shieldings,
σ [σ(Me4Si) - σ ) δ]. The values are very similar for both
silylenes. The strongly deshieldedδxx is a result of a very strong
paramagnetic contribution toσxx (σ < 0) of the silicon lone pair.
A magnetic field along this axis mixes 1p(Si) with the empty
3p(Si). In addition, strong paramagnetic ring currents from the
nitrogen lone pairs contribute significantly to the deshieldedδxx

component and to the isotropic chemical shiftδiso.
The calculated orbital contributions toδxx in 4 and5 are also

quite similar with the exception of a larger deshielding contribu-
tion of 1p(Si) in the saturated5 (1p(Si):-319.2 and-412.9 ppm
for 4 and5, see Table 2). This results from a smaller 3p(Si)/

1p(Si) gap in5 compared to4 (11.6 and 12.1 eV, respectively, at
MP2/6-31G*//MP2/6-31G*), due mainly to stabilization of the
silicon lone pair by the inductive effect of theâ-vinyl group.
The chemical shift tensors do not provide evidence about

electron delocalization in1 and 3, but nucleus independent
chemical shift (NICS) calculations may provide a test for cyclic
conjugation.7 A ghost atom placed in the center of the five-
membered ring in each of the silylenes is strongly shielded (1,
-11.9;2,-7.0;6,-10.5 ppm). This results, however, from local
contributions of nearbyσ-bonds.16 Placing the ghost atoms 2 Å
above the ring center (NICS(2.0)) shows that, for typical aromatic
molecules, the shielding influence of the ring current is still
appreciable (-5.3 for benzene,-4.7 for thiophene). Judging from
their NICS(2.0) values, both1 (-2.7) and6 (-2.6) are signifi-
cantly less aromatic than benzene but nevertheless possess a
discernible ring current, in contrast to2 for which NICS (2.0) is
negligible, only-0.6. Similar NICS(2.0) calculations for model
molecules (4, -2.9; 5, -0.7) are consistent with the conclusion
that the unsaturated silylenes have a diamagnetic ring current
about half as large as that in benzene.
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Figure 1. Molecular and magnetic axes for silylenes1, 2, and3.

Table 2. Calculated Chemical Shielding Tensors and Orbital
Contributions of4 and5 (absolute shieldingsσ in ppm,
IGLO//BasisII/MP2/6-31G*)

1p(Si) 1p(N) L(Si)a ΣSiXb Σ + K(Si)c δd

4 σxx -319.2 -287.5 183.7 -51.9 21.3 353.8
σyy -133.1 -164.5 227.3 -16.6 409.3 -34.2
σzz 17.0 -299.1 262.0 -26.8 449.3 -74.2
Σ/3 -145.1 -250.4 224.3 -31.8 293.5 81.6

5 σxx -412.9 -283.3 173.3 -28.3 -55.5 430.6
σyy -157.1 -185.1 217.9 -19.5 352.4 22.7
σzz 16.5 -326.0 259.7 -25.0 421.4 -46.2
Σ/3 -184.5 -265.0 216.7 -24.3 239.4 135.7

a Si L-shell contributions without the lp(Si).b Sum of contributions
from remote atoms, except the lp(N).c Sum of the preceding four terms
plus the K-shell contribution, 496.2.dRelative to TMS:σ29Si (TMS)
) 375.1.
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